PHOTONIC-NEUROSURGERY LAB

Difato Francesco

Neuroscience research has recently taken advantage of optical approaches to record, modulate and manipulate the physiological activity of neurons. Studies on the nature of light-matter interactions have paved the way for emerging fields in biophysics and neuroscience, while advances in optical systems have provided minimally invasive approaches for studying the structure and function of living cells. Precise engineering of light-matter interactions allows contact-free manipulation of biological samples, such as the use of optical tweezers and laser dissector for precise and reproducible “optical surgery”. At the same time, molecular engineering has provided a new generation of optical probes to detect and modulate the activity of living cells.

My work has focused on the development of optical systems for the precise and controlled spatio-temporal manipulation of biological samples, and on the integration of optical setups with electrophysiological recording devices to study the central nervous system at various levels of complexity.

UOPTYoungaward  Taylor

  The Koh Young Best Paper Award 2012

      

Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks.  F. Difato, L. Schibalsky, F. Benfenati, and A. Blau. International Journal of Optomechatronics, 2011, 5(3), 191-216.

Corresponding Author: Difato F.

Photonic-neurosurgery lab @ JOVE

click on the image below to watch the published video article

JoVE

Articles tagged with: membrane tension

Axon regeneration

on Sunday, 18 March 2012. Posted in Home

During development, the axons of neurons in the mammalian central nervous system lose their ability to regenerate after injury. In order to study the regeneration process, we used a laser dissector system based on a sub-nanosecond pulsed UVA laser to inflict a partial damage to the axon of mouse hippocampal neurons. The use of such laser gives the possibility to deliver very low average power to the sample to be ablated. Therefore, the collateral damage due to temperature rise was reduced and for the first time, we were able to manipulate the neurite of cultured mouse neurons during the first days in vitro with sub-cellular precision. Force spectroscopy measurements were performed in parallel during and after the partial ablation of the neurite, by the use of a bead attached to the neurite membrane and held in an optical trap. The sub-piconewton and millisecond resolution of the force spectroscopy measurements allowed to quantify the damage inflicted to the process and to monitor the viscoelastic properties of the axonal membrane during regeneration. The reorganization and regeneration of the axon was documented by long-term (24-48 hours) bright-field live imaging using an optical microscope equipped with a custom-built cell culture incubator.

Structured light

Force spectroscopy

Growth cone navigation

Electrophysiology

Laser Dissection

Axon Regeneration